322 research outputs found

    Comparison of Anesthesia for Dental/Oral Surgery by Office-based Dentist Anesthesiologists versus Operating Room-based Physician Anesthesiologists

    Get PDF
    Few studies have examined the practice characteristics of dentist anesthesiologists and compared them to other anesthesia providers. Using outcomes from the National Anesthesia Clinical Outcomes Registry and the Society for Ambulatory Anesthesia Clinical Outcomes Registry for dental/oral surgery procedures, we compared 7133 predominantly office-based anesthetics by dentist anesthesiologists to 106,420 predominantly operating room anesthetics performed by physician anesthesia providers. These encounters were contrasted with 34,191 previously published encounters from the practices of oral and maxillofacial surgeons. Children younger than 6 years received the greatest proportion of general anesthetic services rendered by both dentist anesthesiologists and hospital-based anesthesia providers. These general anesthesia services were primarily provided for complete dental rehabilitation for early childhood caries. Overall treatment time for complete dental rehabilitation in the office-based setting by dentist anesthesiologists was significantly shorter than comparable care provided in the hospital operating room and surgery centers. The anesthesia care provided by dentist anesthesiologists was found to be separate and distinct from anesthesia care provided by oral and maxillofacial surgeons, which was primarily administered to adults for very brief surgical procedures. Cases performed by dentist anesthesiologists and hospital-based anesthesia providers were for much younger patients and of significantly longer duration when compared with anesthesia administered by oral and maxillofacial surgeons. Despite the limited descriptive power of the current registries, office-based anesthesia rendered by dentist anesthesiologists is clearly a unique and efficient mode of anesthesia care for dentistry

    Prediction of Agricultural Implement Hydraulic Power Requirements Using Controller Area Network Bus Data

    Get PDF
    One of the important challenges in agricultural machinery research is the ability to effectively determine power requirements of a given field operation. The Controller Area Network (CAN) Bus, also known as ISOBUS, has proven to be an effective digital tool for tractor and implement data collection. This study attempted to determine implement hydraulic power requirements using a combination of existing public tractor CAN messages and minimal added sensors. The sensor signals were published on the CAN bus for ease of simultaneous sensor signal and CAN message data collection. Based upon the available CAN messages, this study attempted to measure hydraulic flow rate distributed by a tractor’s directional control valve without the incorporation of a flowmeter. For instances when a valve received its requested flow rate by the operator, the valve’s flow rate was predicted as a function of the valve’s spool position. The resulting curve of best fit had a coefficient of determination of 0.9993 and a root-mean-square-error of 0.8805 Lmin-1 for the combination of multiple implement loads. When the valve became flow-limited, and the effective flow rate could no longer be determined by spool position, predicting the flow rate from a measured pressure drop across a minor loss in the system was investigated. From data collected on a flow-limited valve caused by reduced engine speed, a piece-wise line of best fit was found, predicting the flow rate based upon the pressure drop. Additional pressure sensors were used to determine the flow-state of the valve

    Membrane Insertion for the Detection of Lipopolysaccharides: Exploring the Dynamics of Amphiphile-in-Lipid Assays

    Get PDF
    Shiga toxin-producing Escherichia coli is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assays to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E. coli O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. We also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures

    A Gravitationally Lensed Supernova with an Observable Two-Decade Time Delay

    Full text link
    When the light from a distant object passes very near to a foreground galaxy or cluster, gravitational lensing can cause it to appear as multiple images on the sky. If the source is variable, it can be used to constrain the cosmic expansion rate and dark energy models. Achieving these cosmological goals requires many lensed transients with precise time delay measurements. Lensed supernovae (SN) are attractive for this purpose because they have relatively simple photometric behavior, with well-understood light curve shapes and colours - in contrast to the stochastic variation of quasars. Here we report the discovery of a multiply-imaged supernova, AT2016jka ("SN Requiem"). It appeared in an evolved galaxy at z=1.95z=1.95, gravitationally lensed by a foreground galaxy cluster. It is likely a Type Ia supernova - the explosion of a low-mass stellar remnant, whose light curve can be used to measure cosmic distances. In archival Hubble Space Telescope imaging, three lensed images of the supernova are detected with relative time delays of <<200 days. We predict a fourth image will appear close to the cluster core in the year 2037±\pm2. Observation of the fourth image could provide a time delay precision of \approx7 days, <1%<1\% of the extraordinary 20 year baseline. The SN classification and the predicted reappearance time could be improved with further lens modelling and a comprehensive analysis of systematic uncertainties.Comment: Accepted for publication in a peer-reviewed journal. Main text = 6 pages, 3 figures, 1 table; Full document = 28 pages, 12 figures with Methods, Supplemental Info and references. v2: reformatted; minor corrections in S

    A genetic variant in telomerase reverse transcriptase (TERT) modifies cancer risk in Lynch syndrome patients harbouring pathogenic MSH2 variants

    Get PDF
    Individuals with Lynch syndrome (LS), have an increased risk of developing cancer. Common genetic variants of telomerase reverse transcriptase (TERT) have been associated with a wide range of cancers, including colorectal cancer (CRC) in LS. We combined genotype data from 1881 LS patients, carrying pathogenic variants in MLH1, MSH2 or MSH6, for rs2075786 (G>A, intronic variant), 1207 LS patients for rs2736108 (C>T, upstream variant) and 1201 LS patients for rs7705526 (C>A, intronic variant). The risk of cancer was estimated by heterozygous/homozygous odds ratio (OR) with mixed-effects logistic regression to adjust for gene/gender/country of sample origin considering family identity. The AA genotype of SNP rs2075786 is associated with 85% higher odds at developing cancer compared to GG genotype in MSH2 pathogenic variant carriers (p = 0.0160). Kaplan-Meier analysis also shows an association for rs2075786; the AA allele for MSH2 variant carriers confers risk for earlier diagnosis of LS cancer (log-rank p = 0.0011). We report a polymorphism in TERT to be a possible modifier of disease risk in MSH2 pathogenic variant carriers. The rs2075786 SNP in TERT is associated with a differential risk of developing cancer for MSH2 pathogenic variant carriers. Use of this information has the potential to personalise screening protocols for LS patients

    Type Ia Supernova Distances at z > 1.5 from the Hubble Space Telescope Multi-Cycle Treasury Programs: The Early Expansion Rate

    Full text link
    We present an analysis of 15 Type Ia supernovae (SNe Ia) at redshift z > 1 (9 at 1.5 < z < 2.3) recently discovered in the CANDELS and CLASH Multi-Cycle Treasury programs using WFC3 on the Hubble Space Telescope. We combine these SNe Ia with a new compilation of 1050 SNe Ia, jointly calibrated and corrected for simulated survey biases to produce accurate distance measurements. We present unbiased constraints on the expansion rate at six redshifts in the range 0.07 < z < 1.5 based only on this combined SN Ia sample. The added leverage of our new sample at z > 1.5 leads to a factor of ~3 improvement in the determination of the expansion rate at z = 1.5, reducing its uncertainty to ~20%, a measurement of H(z=1.5)/H0=2.67 (+0.83,-0.52). We then demonstrate that these six measurements alone provide a nearly identical characterization of dark energy as the full SN sample, making them an efficient compression of the SN Ia data. The new sample of SNe Ia at z > 1 usefully distinguishes between alternative cosmological models and unmodeled evolution of the SN Ia distance indicators, placing empirical limits on the latter. Finally, employing a realistic simulation of a potential WFIRST SN survey observing strategy, we forecast optimistic future constraints on the expansion rate from SNe Ia.Comment: 14 pages, 5 figures, 7 tables; submitted to Ap
    corecore